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EFFICIENT COMPUTATION WITH A LINEAR MIXED

MODEL ON LARGE-SCALE DATA SETS WITH

APPLICATIONS TO GENETIC STUDIES

By Matti Pirinen, Peter Donnelly and Chris C.A. Spencer

University of Oxford

Motivated by genome-wide association studies we consider a stan-
dard linear model with one additional random effect in situations
where many predictors have been collected on the same subjects and
each predictor is analyzed separately. Three novel contributions are
(1) a transformation between the linear and log-odds scales which
is accurate for the important genetic case of small effect sizes; (2)
a likelihood-maximization algorithm that is an order of magnitude
faster than the previously published approaches; and (3) efficient
methods for computing marginal likelihoods which allow Bayesian
model comparison. The methodology has been successfully applied
to a large-scale association study of multiple sclerosis including over
20,000 individuals and 500,000 genetic variants.

1. Introduction. We describe computationally efficient methods to an-
alyze one of the simplest linear mixed models:

(1.1) Y = Xβ + ̺+ ε,

where Y = (y1, . . . , yn)
T is the vector of responses on n subjects, X = (xik)

is the n×K matrix of predictor values on the subjects, β = (β1, . . . , βK)T

collects the (unknown) linear effects of the predictors on the responses Y

and the random effects ̺ and ε are assigned the distributions

(1.2) ̺|(η, σ2) ∼ N (0, ησ2R) and ε|(η, σ2) ∼ N (0, (1− η)σ2I).

Here R is a known positive semi-definite n×n matrix, I is the n×n identity
matrix and parameters σ2 > 0 and η ∈ [0, 1] determine how the variance is
divided between ̺ and ε.

Originally this model arose to explain how the genetic component of a
quantitative trait, such as height, is correlated between relatives (Fisher,
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1918). Many extensions of the model have been thoroughly studied in genet-
ics to estimate heritabilities of traits, breeding values of individuals and loca-
tions of quantitative trait loci (see e.g. Lynch and Walsh (1998); Sorensen and Gianola
(2002)).

Recently, the model has been applied to genome-wide association stud-
ies (GWAS) (Astle and Balding, 2009; Kang et al., 2008, 2010; Yu et al.,
2005; Zhang et al., 2009, 2010). GWAS measure genotypes at a large num-
ber (500,000 - 1,000,000) of single-nucleotide polymorphisms (SNPs) in large
samples of individuals, with the goal of identifying genetic variants that ex-
plain variation in a phenotype (McCarthy et al., 2008). Typically GWAS
data are analyzed by testing each SNP separately using standard linear
or logistic regression models. However, these models become invalid if the
ascertainment procedure itself introduces correlations between the pheno-
type and the genetic background of the individuals. (See Astle and Balding
(2009) for a detailed description of spurious associations in GWAS.) The
linear mixed model (1.1) can reduce the confounding effects by using the
covariance matrix R of the random effect ̺ to model the genome-wide re-
latedness between the samples. To emphasize the structure of the GWAS
application we write the model as

(1.3) Y = CβC +X(ℓ)βℓ + ̺+ ε,

whereX(ℓ) contains the genetic data at the SNP ℓ and the matrixC contains
the non-genetic covariates, such as age and sex. The most common strategy
is to set X(ℓ) equal to the number of copies of the minor allele at the SNP ℓ,
but also dominant, recessive or more complex genetic effects can be modeled
in this framework. Even when the model needs to be analyzed for millions
of different X(ℓ) matrices, one for each SNP, efficient computation becomes
possible since the matrix R remains constant for a large number of the
SNPs.

Our work with this model is motivated by a large GWAS on multiple scle-
rosis (20,119 individuals, 520,000 SNPs) which we explain in detail in Section
2. This case-control data set required novel methodological and computa-
tional contributions which, together with their applications in other genetics
problems, are explained in the remaining sections of this paper.

Section 3 gives a justification for applying the linear mixed model to
binary data and introduces a way to transform the effect size estimates
from the linear to log-odds scale. Such a transformation is crucial for a
meaningful interpretation of the effect sizes and for combining the results
with other separately analyzed data sets, for example, in a replication phase
of GWAS or in a meta-analysis of several independent studies.
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The large size of the typical GWAS puts a premium on computational
efficiency. Section 4 describes a novel algorithm for likelihood analysis that
reduces the computation time from hundreds of years, as would be required
by the existing EMMA algorithm (Kang et al., 2008), to only a few days
and is almost as fast as previous approximations to the model (Kang et al.,
2010; Zhang et al., 2010). With our implementation it is computationally
feasible to determine when the full model is noticeably more powerful than
the existing approximations as we demonstrate in Section 4.

Bayesian approaches provide a natural way to utilize prior knowledge on
the genetic architecture of common diseases (Stephens and Balding, 2009).
In Section 5 we compute Bayes factors using the linear mixed model. The
first application is in evaluating the genetic associations in the multiple
sclerosis data set. The second application investigates when a non-zero her-
itability can be convincingly detected in a large and only distantly related
population sample of individuals.

In the GWAS setting the challenge of combining data across genetically
heterogeneous collections with strongly differing case-control ratios will be-
come more routine as study sizes increase. We therefore hope that our results
will be important in human genetics, and potentially also in other fields of
science, where large amounts of heterogeneous data need to be analyzed
efficiently.

We have implemented the methodology in a software package called MMM
which is freely available under the GNU General Public License.

2. Motivating data set: Multiple sclerosis. Multiple sclerosis (MS)
is a disease of the central nervous system that can manifest itself through
a variety of neurological symptoms including, for example, motor problems,
changes in sensation and chronic pain. The largest individual genetic effect
is associated with a region of the major histocompatibility complex on chro-
mosome 6, and about 20 additional risk loci for MS had been identified by
the beginning of 2011.

Recently we were involved in a large GWAS of MS (IMSGC and WTCCC2,
2011). The study was divided into the UK component (1,854 cases and 5,175
controls) and the non-UK component (7,918 cases and 12,201 controls) which
were analyzed separately and combined via a fixed-effects meta-analysis.
About 100 of the most promising signals among the 470,000 SNPs passing
the quality control criteria were interrogated in an independent replication
data set of 4,218 cases and 7,296 controls.

A methodologically challenging part of the study was the non-UK compo-
nent with 20,119 individuals of European ancestry collected from 14 different
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Country Cases Controls Country Cases Controls

Finland 581 2,165 Australia 647 –

Sweden 685 1,928 New Zealand 146 –

Norway 953 121 Ireland 61 –

Denmark 332 – USA 1,382 5,370

Germany 1,100 1,699 France 479 347

Poland 58 – Spain 205 –

Belgium 544 – Italy 745 571

Table 1

The origins of the samples in the non-UK component of the MS study.

countries. Table 1 shows that the case-control ratio varied strongly between
the countries, with some collections consisting only of case samples. As a re-
sult, standard meta-analysis approaches, where the samples from each coun-
try are analyzed separately and the summary statistics combined, turned out
to be inefficient.

Alternative approaches, which jointly analyze data from several countries,
are likely to suffer from confounding effects of population structure. Figure
1 shows a small part of a genome-wide correlation matrix of the non-UK in-
dividuals calculated from about 200,000 SNPs. Block-like structures on the
diagonal show, unsurprisingly, that the similarity of the genomes correlates
with the sampling locations. Since the case-control status also has a strong
dependence on the sampling locations due to the ascertainment process (Ta-
ble 1), spurious associations between SNPs and the phenotype will arise if
the correlation structure in the data is not properly modeled.

We explored several approaches to address this issue. First we conducted
a meta-analysis on groups that had balanced case-control ratios and were
genetically homogeneous, according to a model-based clustering algorithm.
We also conducted logistic regression by including the seven leading principal
components (PCs) of the population structure as covariates (Patterson, Price and Reich,
2006). A standard way of checking GWAS analysis is based on the assump-
tion that only a very small proportion of the variants affect the phenotype
and therefore the test statistics of the majority of the variants should follow
the null distribution (Devlin, Roeder and Wasserman, 2001). This assump-
tion is often assessed through the “genomic control” parameter, λ, defined as
the ratio of the median of the observed test statistic distribution to that of
the theoretical null distribution. A substantial inflation was observed with
λ = 1.44 for the clustering approach and λ = 1.22 for the PC approach
(Figure 1). Although some of the inflation was likely to reflect the poly-
genic architecture of the disease (small genetic effects at very many vari-
ants) (Yang et al., 2011), it remained likely that the underlying population
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Fig 1. Left panel. An 80 × 80 submatrix of the genetic correlation matrix of the non-
UK individuals in the MS study. Ten randomly chosen individuals are shown for each
of the following countries: FInland, SWeden, GErmany, IReland, POland, FRance, ITaly
and SPain. The colors correspond to the pair wise correlation coefficients according to the
scale in the middle. The diagonal values are close to 1.0 and are colored white.
Right panel. The association test statistics of 470,000 SNPs plotted from the 1st per-
centile to the 50th (median). The null distribution on the X-axis is the chi-square with 1
df. Methods are the linear mixed model (MM) and the logistic regression with 7 leading
principal components of the population structure as covariates (7PCs). The line is y=x.

structure was confounding the tests.
The linear mixed model as presented in this paper provided a way to in-

clude the whole estimated genetic correlation structure of 20,119 individuals
in the regression model. The model-checking confirmed that the confound-
ing effects were well controlled (λ = 1.02, see Figure 1) while simultaneously
the method maintained power to detect associations, as evidenced through
the replication of over 20 previously-known associations. The main results
of the MS GWAS, analyzed via the linear mixed model, included the identi-
fication of 29 novel association signals. These signals had important biolog-
ical consequences, with further analyses showing that immunological genes
are significantly overrepresented near the identified loci. In particular, the
findings highlight an important role for T-helper-cell differentiation in the
pathogenesis of MS. Another striking pattern was the very substantial over-
lap between genetic variants associated with MS and those associated with
autoimmune diseases (see IMSGC and WTCCC2 (2011) for further details).

3. Binary data. The linear mixed model (1.1) is formulated for a uni-
variate quantitative response and therefore its application to binary case-
control data requires further justification. A connection between the stan-
dard linear model and the Armitage trend test (Armitage, 1955) that we de-
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rive in the supplementary text (Pirinen, Donnelly and Spencer, 2012) adds
to the work of Astle and Balding (2009) and Kang et al. (2010) who have
previously used the mixed model for significance testing in case-control
GWAS. In addition to testing it is also important to measure the effect
sizes on a relevant scale. Next we explain how the output from the standard
linear model can be turned into accurate effect size estimates on the log-odds
scale, which is a natural scale for case-control studies.

For 0-1 valued responses Y = (y1, . . . , yn)
T a logistic regression model

assumes that

(3.1) pi = P (yi = 1|X,γ) =
exp(Xiγ)

1 + exp(Xiγ)
,

where the row i of X is denoted by Xi and the effects of the predictors are
in the vector γ. The score function of the corresponding binomial likelihood
for a set of independent observations is XT (Y −p) where p = (p1, . . . , pn)

T

is a function of γ. If we can justify a linear approximation p ≈ Xβ,
then the score becomes approximately zero at the least squares estimate
β̂ = (XTX)−1XTY . In the supplementary text we argue that such an
approximation is good when the logistic model effects γ are small and we
provide a connection between the parameters γ and β in those cases. These
steps allow us to use the output from the standard linear model (i.e. the
least squares solution β̂) to approximate the maximum likelihood estimates
of the logistic regression model. For our GWAS application, where the case-
control status is regressed on the population mean and the (mean-centered)
reference allele count at a SNP, these considerations lead to the following
estimate of the genetic effect on the log-odds scale:
(3.2)

β̂

(
φ(1− φ) + 0.5(1− 2φ)(1− 2θ)β̂ −

0.084 + 0.9φ(1− 2φ)θ(1− θ)

φ(1− φ)
β̂2

)−1

,

where φ is the proportion of the cases in the data, θ is the reference allele
frequency in the data and β̂ is the least squares estimate of the effect of the
(mean-centered) reference allele count on the binary case-control status.

To investigate how well this approximation works in typical GWAS set-
tings we simulated case-control data for 5,000 unrelated individuals at 500
SNPs for nine case proportions φ ∈ {0.1, 0.2, . . . , 0.9}. The allelic log-odds
ratios γ were taken from an equally spaced grid on the interval correspond-
ing to odds ratios in [1.0, 1.3]. This range covers typical GWAS hits; for
example, in our MS study the median effect size among the 52 reported
associations was 1.11 (minimum 1.08, maximum 1.22). In our MS study the
lowest minor allele frequency among the variants taken to replication was
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Fig 2. Difference between the linear and the logistic model. The panels include results from
2,500 (top-row) and 2,000 (bottom row) binary variants simulated as described in the text.
The titles on the leftmost panels show the proportion of cases, φ, y-axes show the relative
differences between the linear and the logistic models in percentages and x-axes show the
results from the logistic model. logOR, log-odds ratio; SE, standard error; -log10(p), -log10
of the p-value from the likelihood-ratio test.

4.6% which motivated us to sample the risk allele frequencies for the con-
trols from a Beta(2,2) distribution, truncated to the interval (0.05, . . . , 0.95).
The frequencies in cases were determined by assuming that each copy of the
risk allele increases log-odds of the disease additively by γ. Both linear and
logistic regression models were then applied to the data with the population
mean and the sampled genotypes as predictors. The differences in log-odds
estimates γ̂ and their standard errors together with the p-values from the
likelihood-ratio tests are shown in Figure 2, where the parameter estimates
from the linear model have been transformed according to formula (3.2).

The conclusion from Figure 2 is that in a typical case-control GWAS data
set where genetic effects are small, the case-control ratio is well-balanced
and allele frequencies are not extreme (say, OR ≤ 1.3, 0.30 ≤ φ ≤ 0.70
and 0.05 < freq < 0.95), the standard linear model provides an accurate
approximation of the corresponding logistic regression model. The relative
errors in the log-odds estimates or their standard errors are at most around
1% and in the -log10 p-values at most around 4% (top row of Figure 2). This
result is useful because it suggests a natural way to apply the linear mixed
model to binary data by using generalized least squares estimates (details
in the supplementary text). The following empirical results show that this
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Fig 3. Absolute differences of 93 effect sizes between multiple sclerosis non-UK discovery
and replication studies. Scales are log-odds (Left panel) and standardized log-odds (Right
panel). MM: the linear mixed model in the discovery data; 7PCs: logistic regression with 7
principal components of genetic structure as covariates in the discovery data; replication:
the replication data analyzed with logistic regression. Points above the diagonal: 62/93
(Left) and 59/93 (Right).

procedure performed well in our application.
In our multiple sclerosis study we took 93 independent SNPs to the repli-

cation phase. The replication analysis was conducted with 4,218 cases and
7,296 controls using logistic regression (for details see IMSGC and WTCCC2
(2011)). Figure 3 shows the absolute difference between the effect sizes in
replication analysis and in the non-UK part of the discovery analysis using
the linear mixed model (x-axes) and logistic regression including 7 princi-
pal components as covariates (y-axes). The log-odds ratios estimated by the
linear mixed model were closer to the replication results in 62 out of 93
SNPs (one-sided binomial p-value 0.0009). The same pattern was present
when the absolute differences are standardized (59 out of 93, p=0.006), sug-
gesting that the methods presented here for estimating the log-odds ratios
by the linear mixed model can lead to more accurate estimates than stan-
dard logistic regression analyses when the data contain complex correlation
structure which, for practical reasons, cannot be fully included in a logistic
regression model.

Obtaining effect size estimates and their standard errors is critical in the
genetics context both in interpreting the results of individual studies, and
in combining results, via meta-analysis, across studies.
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4. Maximum likelihood computation. The main analysis of our
multiple sclerosis study was based on maximum likelihood (ML). In this
section we consider how to efficiently maximize the likelihood function cor-
responding to the sampling distribution

(4.1) Y |(β, σ2, η) ∼ N (Xβ, ησ2R+ (1− η)σ2I),

with respect to β, η and σ2.
In general, finding the ML estimates for linear mixed models requires iter-

ative procedures with expensive matrix operations (p.787 Lynch and Walsh
(1998)), but for the particular model (4.1) more efficient algorithms can be
found. To our knowledge the most efficient published algorithm is EMMA
(Kang et al., 2008) which has been applied to several recent GWAS (Atwell et al.,
2010; Boyko et al., 2010). The algorithm FMM by Astle (2009), which is cur-
rently being implemented in the software suite GenABEL (Aulchenko et al.,
2007), was faster than EMMA in our test cases but to date its exact compu-
tational details have not been published. Another implementation of EMMA
is in the software package TASSEL (currently v.3.0) (Bradbury et al., 2007)
which provides a graphical interface and several approximations to reduce
the running time.

Next we describe a novel conditional maximization algorithm which is an
order of magnitude faster than EMMA and was also faster than FMM in our
tests except with the smallest sample size of n = 250 individuals. We also
consider in which situations the full ML estimation is more powerful than
a recently proposed generalized least squares approximation (Kang et al.,
2010; Zhang et al., 2010), and compare the available methods. Finally we
give running times on our MS data set.

4.1. Conditional maximization. Our contribution to the ML estimation
under the model (4.1) is a transformation of the data and predictors in such
a way that the covariance matrix becomes diagonal, enabling an efficient
conditional maximization procedure. This transformation is a direct exten-
sion of that used in general linear models to handle non-diagonal covariance
matrices to a more general case of two variance components.

The eigenvalue decomposition of the positive semi-definite matrixR yields
an orthonormal n×n-matrixU of eigenvectors and a diagonal n×n-matrixD
of non-negative eigenvalues for whichR = UDUT (see Golub and Van Loan
(1996)). Let us write Ỹ = UTY , X̃ = UTX, and Σ̃ = ηD+(1− η)I. Then
the log-likelihood function is
(4.2)

L(β, η, σ2) = c−
n

2
log(σ2)−

1

2
log(|Σ̃|)−

1

2σ2
(Ỹ − X̃β)T Σ̃

−1
(Ỹ − X̃β),
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where c = −n
2 log(2π) and |Σ̃| denotes the determinant of Σ̃ (details in the

supplementary text).
Note that U ,D and Ỹ are independent ofX and that Σ̃ is a diagonal ma-

trix which allows efficient computation of the inverse and the determinant.
After the eigenvalue decomposition of matrix R (complexity is O(n3)), for
each X the computation of X̃ requires O(kn2) operations where k ≤ K is
the number of columns of X that need to be recomputed, and for each set of
values of the parameters the evaluation of the log-likelihood requires O(nK)
operations. To maximize the log-likelihood we apply a standard optimization
technique of conditional maximization as described in the supplementary
text.

4.2. GLS approximation. In settings where the variance parameter η
does not vary much between the analyzed X matrices, an efficient ap-
proximation can be found by estimating η only once and then applying
a generalized least squares (GLS) method to approximate the ML estimates
of β and σ2 for any given X matrix while η is kept fixed. This idea has
been implemented in the software packages EMMAX (Kang et al., 2010)
and TASSEL (Zhang et al., 2010); similar ideas had been proposed earlier
by Aulchenko, de Koning and Haley (2007). We will call this approach the
GLS approximation to the full model.

The GLS approximation is accurate only if η does not vary much between
different sets of predictors, for example, when the individual predictors ex-
plain only a negligible proportion of the total variance of the response. This
situation is typical in current GWAS studies on humans as the still uniden-
tified genetic effects are small. For example, in our MS study there were
no noticeable differences between the full likelihood analysis and the GLS
approximation and in their simulation study Zhang et al. (2010) did not
find significant differences in the statistical power between the two meth-
ods. However, if the data contain closely related individuals and individual
genetic effects explain enough phenotypic variation, then the full likelihood
analysis may have higher power than the GLS approximation as we demon-
strate below. With our efficient implementation of the full model it is possible
to study this in more detail than before.

Family Example. We consider children of 25 independent families each
with 6 full-siblings and a quantitative phenotype of whose variance 15 % is
explained by a major gene and 8.5% by minor genes (heritability is 23.5%).
The remaining 76.5% of the variation in the phenotype is independent of
the family structure.

We simulated 10 million such phenotypes and paired each with a set
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α MM GLS LM

EMPIRICAL

10−3 0.914 0.910 0.890
(0.913..0.915) (0.909..0.911) (0.889..0.891)

10−4 0.762 0.751 0.708
(0.757..0.767) (0.746..0.757) (0.702..0.714)

THEORETICAL

10−3 0.914 0.903 0.887
(0.913..0.914) (0.903..0.904) (0.886..0.887)

10−4 0.760 0.732 0.702
(0.759..0.761) (0.731..0.733) (0.701..0.703)

10−6 0.338 0.293 0.265
(0.337..0.339) (0.292..0.294) (0.264..0.266)

5× 10−8 0.145 0.115 0.099
(0.144..0.145) (0.114..0.115) (0.098..0.099)

Table 2

Power in family data. Columns: α, type I error rate; MM, linear mixed model; GLS,
generalized least squares approximation; LM, standard linear model. Cells give estimates
of power together with their 95% confidence intervals. The first two rows are based on the
empirical type I error thresholds and the remaining four rows use theoretical thresholds.

of simulated genotypes that were independent of the phenotype (given the
family structure). The minor allele frequency was chosen uniformly between
0.25 and 0.5 and Hardy-Weinberg equilibrium (see e.g. Lynch and Walsh
(1998)) was assumed. We used these data sets to get accurate estimates of
the threshold values of the likelihood ratio statistic under the null hypothesis
of no genetic effect down to type I error 10−4.

We then simulated an additional one million phenotypes but this time
tested the genotypes of the major gene that influenced each phenotype.
Using the empirical threshold values (with their 95% confidence intervals)
from the null simulations the top two rows of Table 2 show the power of
the linear mixed model (MM), the GLS approximation and the standard
linear model (LM) at type I errors 10−3 and 10−4. In both cases MM is
more powerful than the GLS approximation which in turn is more powerful
than LM.

In practice, inferences in GWAS are based on the asymptotic large-sample
properties of the test statistics. As mentioned in Section 2, a widely-used
method for checking how well the asymptotics hold is to assess the ratio of
the medians of the observed and expected (chi-square) test statistic distri-
butions, denoted by λ (Devlin, Roeder and Wasserman, 2001). For a sample
of 107 draws from the theoretical null distribution the (analytically calcu-
lated) upper bound of the 95% confidence interval of λ is 1.0014 whereas
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α EXPECTED MM GLS LM

10−3 0.997..1.003 0.998 0.979 0.990

10−4 0.992..1.008 0.997 0.973 0.992

10−5 0.981..1.019 1.001 0.969 1.002

Table 3

Ratios of observed quantiles to expected. Columns: α, upper quantile; EXPECTED,
theoretical 95% confidence interval for the ratio in 107 samples; MM, linear mixed model;
GLS, generalized least squares approximation; LM, standard linear model. Values outside

the interval are in bold.

in our 107 null simulations we observed values 1.055, 1.031 and 1.280 for
MM, GLS approximation and LM, respectively. Even though accounting for
families has brought MM and GLS much closer to the asymptotic null dis-
tribution compared to LM, both methods are still inflated with respect to
the theoretical distribution in this example with a fairly small sample size.
Note that the GLS approximation always results in smaller likelihood ratio
statistics, and thus smaller λ values, than MM since GLS does not maximize
the full model under the alternative whereas MM does.

A simple way to make the observed test statistics match better with the
theoretical distribution is to divide them by their corresponding estimates of
λ, a procedure called genomic control (GC) (Devlin, Roeder and Wasserman,
2001). In this example GC works well but since it treats all the variants the
same it is not an ideal method for controlling for confounding in more com-
plex scenarios where different loci have very different population genetic
histories (Astle and Balding, 2009). Therefore we have not used it with the
MS data set.

Table 3 shows the ratios of some quantiles of the observed distributions to
their theoretical values after genomic control, together with the theoretical
95% intervals of those ratios assuming 107 draws from the null distribution.
We observe no deviation from the theoretical distribution for the linear
mixed model and only a slight deflation for the standard linear model but the
GLS approximation is deflated throughout the range of quantiles considered.
Whether this phenomenon is specific to the family data considered or holds
more generally requires further investigation. The lower panel of Table 2
shows power at the theoretical thresholds corresponding to type I error rates
relevant in GWAS, after genomic control was applied to the one million
non-null tests. The relative power difference between MM and the GLS
approximation increases with decreasing type I errors.

In this example MM was noticeably more powerful than the GLS ap-
proximation, both at the empirical and theoretical thresholds, after making
the inflated statistics comparable by genomic control. On the other hand, if
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neither empirical thresholds nor genomic control parameters were available,
then the GLS approximation could be a more robust choice in small data
sets as reflected by the observed λ values in this example.

4.3. Comparing methods. Our conditional maximization (CM) algorithm,
EMMA and the GLS approximation all make use of a decomposition of the
R matrix requiring O(n3) operations.

(i). EMMA requires an additional O(n3) matrix decomposition for each
set of predictors X whereas CM and GLS are O(n2) algorithms for
each X given the initial decomposition of R.

(ii). EMMA reduces the problem to one-dimensional optimization for which
the global maximum is in theory more reliably found than by using
CM.

(iii). Parameterization of the model through η (CM) has a computational
advantage over parameterization using δ = (1 − η)/η (EMMA) since
the maximization is easier over the compact set η ∈ [0, 1] than over
the unbounded interval δ ∈ [0,∞).

(iv). It is expected that the GLS approximation is computationally more
efficient but in some cases less accurate in ML estimation, and less pow-
erful in testing the predictors than either EMMA or CM, as demon-
strated with the previous family example.

We investigated through simulation studies how the above differences
manifest themselves in practice, related to the reliability and running time
of the algorithms. We applied the EMMA R-package v.1.1.2 (Kang et al.,
2008) with the default parameters and our C-implementation of the CM
algorithm (software package MMM). For the time comparisons we also in-
cluded a GLS approximation (our C-implementation in software package
MMM) and a beta version of the algorithm FMM 1 (Astle, 2009). We note
that the software package TASSEL relies on the EMMA algorithm in full
ML estimation, and for the GLS approximation both TASSEL and EMMAX
are similar to our GLS implementation. Therefore TASSEL and EMMAX
were not included in these comparisons.

4.3.1. Reliability. The purpose of these tests is to assess whether condi-
tion (ii) above has any practical effect on the variance parameter estimation.
For each value of η ∈ {0, 0.05, 0.1, . . . , 0.95, 1} we generated 1,000 data sets
for n = 500 subjects. A single data set consisted of an R matrix and a Y

vector. To create R we simulated non-zero elements of an n × n lower tri-
angular matrix L from the standard normal distribution and set R = LLT

1Downloaded in March 2011 from http://astle.net/wja/
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max log-likelihood σ2 η

max∆ 0.0053 3.0 · 10−5 1.2 · 10−5

range (-1618.332, -1085.829) (0.601, 1.444) (0.029, 0.976)

Table 4

Maximum absolute differences between EMMA and CM and the ranges of the estimated
quantities over 19,000 simulated data sets with 0.05 ≤ η ≤ 0.95.

with the extra condition that if some of the eigenvalues of LLT were < 10−3

they were set to 10−3 to guarantee that R was numerically positive-definite.
(The largest condition number of R matrices was 1.5 × 106.) Y was then
simulated according to the model Y = ̺ + ε, where ̺ ∼ N (0, ηR) and
ε ∼ N (0, (1 − η)I). The ML estimates of η and σ2 were obtained from
EMMA and the CM algorithm. Since FMM does not output the value of
the maximized log-likelihood we have not included it in this comparison.
Also, for these datasets, the GLS approximation is the same as the full
model since we use each R matrix only once. Thus, no separate results for
GLS are reported.

The results for 19,000 data sets simulated with 0.05 ≤ η ≤ 0.95 were the
same between the methods for all practical purposes (Table 4). In addition
to being similar up to 3 decimal places, the optimized log-likelihood values
had no tendency of being higher with one algorithm than with the other
(p = 0.46 in the two-sided binomial test).

When η was on the boundary {0, 1} the CM algorithm found points where
the log-likelihood was at least 0.01 higher than that found by EMMA in
1,503 cases out of the 2,000 data sets (maximum of these differences was
1.06). This is due to property (iii) above which requires EMMA to constrain
the search to a compact subset of its unbounded search space. The size
of the search space is a parameter of EMMA (we used the default values
of −10 < log(δ) < 10) and by increasing this interval higher likelihood
values could be found also by EMMA, but with higher computational cost.
Alternatively, one could parameterize EMMA using η instead of δ in which
case EMMA and CM would be expected to give the same results also on the
boundary η ∈ {0, 1}.

Thus, even if in theory the CM algorithm does not have guaranteed con-
vergence to the global optimum, in practice it has found the same maxima
as EMMA in all 19,000 cases with η ∈ {0.05, . . . , 0.95}. Furthermore, in
the great majority of the remaining boundary cases η ∈ {0, 1} the CM algo-
rithm has actually found a point with a higher likelihood value than EMMA.
Since we generated the covariance matrices randomly without any particular
structure these results suggest that the CM algorithm is a reliable method
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Fig 4. Relative running times for 100 data sets compared to GLS, on the log-10 scale,
as a function of the sample size n. Methods are the R-package EMMA v.1.1.2, our C-
implementations of conditional maximization (CM) and generalized least squares (GLS)
and a C-implementation of FMM (downloaded in March 2011). The figures below the
GLS-line are the GLS times in seconds. Note that GLS is less accurate than the other
three methods which have fairly similar accuracy to each other.

for the general problem of ML estimation in the linear mixed model that we
consider.

4.3.2. Running time. In applications, such as genome-wide association
studies, where a single covariance matrix R is repetitively used with several
sets of predictors X, there is a large difference in the running times between
CM and EMMA due to property (i) above. To investigate this difference, for
each n ∈ {250, 500, . . . , 2000}, we simulated a single R matrix and Y vector
as above, together with 100 different X matrices. Each X had dimension
n×2 and the first column was always vector 1 to model the population mean
and the second column contained a randomly sampled binary vector where
each element was 1 with probability 0.5 and 0 otherwise. The likelihood ratio
(LR) tests for the effects β2 were carried out using EMMA, FMM and our
implementations of the CM and GLS algorithms.

Figure 4 presents the running times as compared to the GLS approxima-
tion. We see that independently of the sample size EMMA takes about 100
times the time of the GLS procedure reflecting the fact that EMMA carries
out an additional n× n-matrix decomposition for each of the 100 data sets.

The relative efficiency of the GLS procedure over CM decreases as the
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EMMA CM FMM GLS

EMMA — 3.2×10−4 0.089 0.43

CM 8.1×10−6 — 0.089 0.43

FMM 0.0045 0.0046 — 0.34

GLS 0.029 0.029 0.027 —
Table 5

Maximum absolute pair wise differences between EMMA, CM, FMM and GLS in
likelihood ratio statistic (upper diagonal) and η estimate (lower diagonal) over the 800

data sets of Figure 4.

sample size grows, because both methods initialize the data similarly by
computing X̃ = UTX, and this task takes a larger and larger proportion
of the whole running time as n grows. A similar trend of decreasing relative
difference is also present when the initial matrix decomposition is subtracted
from the running times of CM and GLS (results not shown).

The FMM algorithm is clearly faster than EMMA but slower than CM
except for the smallest sample size n = 250. We are not able to comment on
the putative sources of these differences since the methodological details of
FMM have not been published.

Table 5 shows the maximum differences between the methods in the like-
lihood ratio statistics and the estimates of η. We see that the results from
EMMA and CM were again practically the same over all 800 data sets and
even though FMM deviated slightly from the common results of EMMA and
CM it was clearly closer to those two methods than to GLS.

Given these results it seems that CM is a natural choice for likelihood
inference in the linear mixed model (4.1) since it is much faster than EMMA,
more accurate than GLS, and still computationally feasible whenever GLS
is.

4.4. MS data set. We applied the CM algorithm to the non-UK compo-
nent of our multiple sclerosis GWAS data set (20,119 individuals and 520,000
SNPs). After the initial matrix decomposition was completed (in 3 hours 35
minutes), the running time was 19 minutes 10 seconds per 1,000 SNPs us-
ing a single processor (Intel Xeon 2.50 GHz) and about 3GB of RAM, so
the whole MS data set can be run in 7 days and 2 hours by using the CM
algorithm on a single processor. If instead one were to apply a method such
as EMMA, which requires a separate matrix decomposition at each SNP,
we estimate that the corresponding running time of the whole MS data set
would be about 210 years. As noted earlier, in GWAS where genetic effects
are small, the GLS approximation (including programs EMMAX and TAS-
SEL) is expected to give, in practice, the same results as the full likelihood
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analysis, and thus could also have been a possible choice for this data set.
The running time of the GLS approximation on the MS data set is about 5
days 19 hours, that is, 18% less than that of CM.

5. Bayes factors. A Bayesian framework provides a fully probabilistic
quantification of the association evidence, which is a useful complement to
the traditional frequentist interpretation in the GWAS context (Wakefield,
2009). It also allows use of prior knowledge, for example a particular de-
pendency between the allele frequency and the effect size. This possibility
becomes more and more important as our understanding about the genetic
architecture of complex traits develops (Stephens and Balding, 2009).

In a Bayesian version of the linear mixed model (1.1), in addition to the
priors (1.2) for the random effects, we adopt the following priors

(β, σ2) ∼ Normal-Inverse-Gamma(m,V , a, b),

η ∼ Beta(r, t).

Here a, b, r, t > 0 are scalar parameters, m is a K dimensional vector and V

is a K ×K matrix. In the supplementary text we describe the properties of
these priors and show how to efficiently evaluate the marginal likelihood of
the data. The marginal likelihoods allow comparisons between models that
differ in the structure of the predictor matrix X (e.g. testing genetic effects
in GWAS), in the prior distributions of the parameters (e.g. whether η = 0),
or both.

5.1. Bayes factors for genetic association. In the non-UK component of
our MS data set (20,119 individuals, 520,000 SNPs) the extra time spent in
computing the Bayes factors for SNP effects compared to computing only
the ML estimates was 2 minutes 13 seconds per 1,000 SNPs (Intel Xeon
2.50 GHz), that is, an increase of about 12% in the running time. Following
previous work (WTCCC, 2007) we chose the prior distribution on the genetic
effect to be centered at 0 and have standard deviation of 0.2 on the log-odds
scale, independently of the allele frequency. With this choice there was nearly
a linear relationship between the logarithmic p-values and the logarithmic
Bayes factors (Figure 5). This data set-specific relationship provides useful
information about these two conceptually different quantities.

5.2. Estimating heritability from a population sample. Recently, Yang et al.
(2010) estimated the proportion of the variance in human height that can
be explained by a dense genome-wide collection of SNPs from a large sample
of distantly related individuals. Here we demonstrate Bayesian computation
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Fig 5. A. Comparing -log10 p-values and log10 Bayes factors in the non-UK component
of our MS study for 102 SNPs taken to replication.
B. Distribution of log10 Bayes factors between models η ∼ Uniform(0, 1) and η = 0.
For each value of η ∈ {0, 0.1, . . . , 1}, 100 data vectors Y were simulated and means
±2×standard deviations of the corresponding log10BF distributions are shown. The pro-
portions of the data sets for which log10(BF)>0 were 0.01, 0.45 and 0.98, for true value
of η being 0.0, 0.1 and 0.2, respectively, and 1 whenever η ≥ 0.3.

by answering a related question of how high heritability (i.e. η in our mixed
model) needs to be in order to be detectably non-zero from a particular sam-
ple of distantly related individuals. Note, however, that we do not interpret
η as heritability in our MS data set due to the confounding effects of the
population structure.

We consider a sample of n = 5, 340 UK individuals including 2,665 healthy
blood donors recruited from the United Kingdom Blood Service (UKBS)
and 2,675 samples from the 1958 Birth Cohort (1958BC). These samples
have been used as common controls for several GWAS carried out by the
Wellcome Trust Case-Control Consortium 2. Here we focus on the genotype
data generated by the Affymetrix 6.0 chip. After a quality control process, we
made use of a genome-wide set of S = 168, 351 approximately independent
SNPs to compute a pair-wise genetic correlation matrix R = (rij) for these
individuals by setting

(5.1) rij =
1

S

S∑

s=1

(
a
(i)
s − 2ps

) (
a
(j)
s − 2ps

)

2ps(1− ps)
,

where a
(i)
s is the number of copies of allele 1 that individual i carries at SNP

s, a
(j)
s is similarly defined for individual j, and ps is the frequency of allele
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1 at SNP s in the whole sample of n individuals. The interpretation of rij
is that of relative genome-wide sharing of alleles compared to an average
pair of individuals in the sample. In particular, negative (positive) rij de-
notes more distant (closer) relatedness than that of an average pair in the
sample, for whom the correlation is rij = 0. The same matrix (divided by
2) is called “kinship matrix” by Astle and Balding (2009) and, excepting a
slight adjustment on the diagonal, it is also same as the “raw” relatedness
matrix used by Yang et al. (2010). For other versions of genetic relationship
matrices, see for example Astle and Balding (2009); Kang et al. (2008). In
our data all non-diagonal elements of R were below 0.03 showing that there
were no close relatives within this sample.

We simulated 100 phenotype vectors Y for the individuals for each value
of η ∈ {0, 0.1, . . . , 1} from the distribution Y ∼ N (0, ηR + (1 − η)I). We
then compared two versions, M0 and M1, of the linear mixed model

Y = β + ̺+ ε, with ̺ ∼ N (0, ησ2R) and ε ∼ N (0, (1− η)σ2I),

where in both models the prior on (β, σ2) was NIG(m = 0, V = 10, a =
10, d = 12) and in M0 : η = 0 and in M1 : η ∼ Uniform(0, 1). For each data
set we computed marginal likelihoods p(Y |M1) and p(Y |M0) whose ratio
gives the Bayes factor (BF), which tells how the prior odds of the models are
updated to the posterior odds by the observed data Y (Kass and Raftery,
1995). In particular, if BF>1 (i.e. log10(BF)>0) then the data favors model
M1 over modelM0, and if BF<1 (i.e. log10(BF)<0) then the opposite is true.
Figure 5 shows the distributions of log10(BF) for different (true) values of
η. The running time of computing BFs for all 1,100 data sets was less than
5 minutes (Intel Xeon 2.50 GHz) after R had been decomposed once, which
took another 4 minutes.

We conclude that in our data set the model M0 is (correctly) favored in
almost all the cases that were simulated with η = 0 and that when the true
η ≥ 0.3 then it is very likely that model M1 will be favored; i.e., in these
individuals we expect that this model comparison procedure detects non-
zero heritability for the phenotypes that truly have heritabilities η ≥ 0.3.
However, with real data there is a complication that the estimated R matrix
does not completely capture the true genome-wide correlation as only a
subset of the relevant variation is used in estimating R (Yang et al., 2010).
As a consequence, with real phenotype data the lower limit of a convincingly
detectable η is likely to be higher than in these simulations which have
assumed that R is known exactly.

In general the distribution of BFs depends on the sample size n, the
relatedness structure R and the priors on η, and the formulae we have
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derived in the supplementary text provide a computationally efficient way
to assess these dependencies in any particular data set.

6. Discussion. Motivated by genome-wide association studies (GWAS)
we have presented computationally efficient ways to analyze the linear mixed
model

Y = Xβ + ̺+ ε, with

̺|(η, σ2) ∼ N (0, ησ2R) and ε|(η, σ2) ∼ N (0, (1− η)σ2I)

in situations where many X matrices are analyzed with a single covariance
matrix R. In the GWAS context the role of the random effect ̺ is to control
for those associations between phenotypes and genetic variants that can al-
ready be explained by the genome-wide genetic sharing. The mixed model
approach is especially useful when the study individuals show complex relat-
edness structure which cannot be captured by including a few linear predic-
tors in the model. Such a situation may arise if a case-control study combines
individuals from several populations with differing case-control ratios (e.g.
IMSGC and WTCCC2 (2011)) or if the sampled individuals contain close
relatives, e.g. in studies of model organisms (Atwell et al., 2010; Kang et al.,
2008; Yu et al., 2005), domesticated animals (Boyko et al., 2010) or humans
with recent pedigree information (Aulchenko, de Koning and Haley, 2007).

For our case-control GWAS application (IMSGC and WTCCC2, 2011)
we have derived an accurate transformation between the linear and logistic
regression models when the predictors have only small effects on the re-
sponse. This approach has the great benefit of enabling interpretation of the
linear mixed model results on the log-odds scale, which is important in the
GWAS context both for understanding the sizes of the genetic effects and
for combining the results via meta-analyses across independent studies.

We have also formulated a conditional maximization (CM) algorithm
for maximum likelihood estimation which is an order of magnitude faster
than the existing EMMA algorithm (Kang et al., 2008) and in our tests was
also faster than the FMM algorithm (Astle, 2009), except with the smallest
sample size (n = 250). With the small effect sizes that are typical in cur-
rent GWAS the full mixed model analysis (performed by CM, EMMA and
FMM) gives very similar results to the generalized least squares approxi-
mation (GLS) that has been implemented in EMMAX (Kang et al., 2010)
and TASSEL (Zhang et al., 2010). However, in other genetics contexts the
full mixed model may be more powerful than the GLS approximation as we
demonstrated with an example that contained close relatives and genetic
variants with large effects. Given that our CM approach is computationally
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only slightly more demanding than the GLS approximation, (by about 20%
in running time in our large MS data set), it seems well-suited for routine
use in genetics applications.

We also considered computation of Bayes factors for the genetic associa-
tions as well as for the variance components. Another possible application
of the Bayesian model is in predicting an unobserved response yi based on
the set of observed values Y −i = (y1, . . . , yi−1, yi+1, . . . , yn)

T and the model
M (which contains information on priors, X and R). The required posterior
p(yi|Y −i,M) ∝ p(yi,Y −i|M) can be efficiently calculated on a grid of pos-
sible values yi by using the methods described in the supplementary text.
These calculations are especially simple if response yi is restricted to a set
of discrete values as is the case with binary data.

A natural question is whether the efficient computational solutions pre-
sented in this article could be extended to linear mixed models with more
random effects, as, for example, when analyzing gene expression data with
both the genetic relatedness and the expression heterogeneity as random
effects (Listgarten et al., 2010). The key issue that made the CM algorithm
fast in our application was the ability to diagonalize the full covariance ma-
trix Σ by using an orthonormal matrix U which did not depend on the
variance parameters, or in other words, R and I were simultaneously diag-
onalizable by the same orthonormal U . More generally a set of symmetric
matrices is simultaneously diagonalizable by an orthonormal matrix if and
only if the matrices commute (Thm 4.18 in Schott (2005)). Thus the com-
putational strategy that we used here generalizes straightforwardly only to
a rather special case of commutable covariance matrices. In other situations
an approximation to the full model could be achieved by the generalized
least squares approximation where the variance parameters are estimated
only once and then kept fixed for the repeated analysis of different predictor
sets (Kang et al., 2010; Zhang et al., 2010). On the other hand, an efficient
generalization of both CM and EMMA to multiple response vectors Y is
straightforward since the necessary matrix decompositions do not depend
on Y . This feature was utilized in our example of heritability estimation.

Extending linear mixed models to proper variable selection models that
simultaneously analyze several thousands of predictors is also an important
topic. Further work is required to determine whether the computational
solutions presented in this work can help implement more complex variable
selection models.

Even though GWAS and other genetics applications have given the main
motivation for this study, our results are more generally valid for any appli-
cation that fits into the framework of the standard linear model with one
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additional normally distributed random effect.
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SUPPLEMENTARY MATERIAL

Supplementary text:

(http://lib.stat.cmu.edu/aoas/???/???). In this supplement we give the de-
tails of the application of the mixed model to binary data, of the conditional
maximization of the likelihood function and of the Bayesian computations.

Software: MMM

(http://www.iki.fi/mpirinen). We have implemented the CM algorithm, the
GLS approximation, the log-odds estimation procedure and the Bayes fac-
tor computation in software package MMM. The C-source code is publicly
available under the GNU General Public License.
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